
DOCUMENT RESUME

ED 275 700 TM 860 600

AUTHOR Magliaro, Susan; Burton, John R.
TITLE Adolescents' Chunking of Computer Programs.
PUB DATE Apr 86
NOTE 19p.; Paper presented at the Annual Meeting of the

American Educational Research Association (67th, San
Francisco, CA, April 16-20, 1986).

PUB TYPE Speeches/Conference Papers (150) -- Reports -
Research/Technical (143)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Adolescents; Analysis of Variance; Cognitive Ability;

*Computer Science Education; *Computer Software;
*Pattern Recognition; *Programing; *Recall
(Psychology); Secondary Education; *Serial Learning;
Summer Programs

IDENTIFIERS BASIC Programing Language; Chunking; PASCAL
Programing Language

ABSTRACT
To investigate what children learn during computer

programming instruction, students attending a summer computer camp
were asked to recall either single lines or chunks of computer
programs from either coherent or scrambled programs. The 16 subjects,
ages 12 to 17, were divided into three instructional groups: (1)
beginners, who were taught to program in Applesoft BASIC; (2)
intermediate, who were taught advanced concepts such as text files in
Applesoft BASIC; and (3) advanced, who already had a background in
BASIC and were taught PASCAL. The instruction involved programming
syntax, debugging, planning, and use of a top-down programming
structure. BASIC programs of 16 to 18 lines in length were arranged
in a top-down structure or scrambled to separate lines which formed
coherent procedural chunks. Students had two minutes to study the
program and four minutes to write it down. Numbers of correct lines
and chunks recalled were analyzed for each ability group and program
version. All groups indicated greater recall of the coherent
programs, especially the intermediate group. Increasing ability was
associated with recall of the scrambled programs. Advanced
programmers also commented that the scrambled programs did not make
sense. (GDC)

* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

t

Adolescents' Chunking - 1

Adolescents' Chunking of Computer Programs

Susan Magliaro and John K. Burton

Virginia Polytechnic Institute

and State University

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED py

Ne. 4.4

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERICV

U.S. DEPARTMENT OF EDUCATION
Office of Educational Reseweh and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

lell<his document has been reproduced as
received from the persOn or organization
originating it

0 Minor menses have been made to improve
reproduction quality.

points of view Or opinions stated in this Orsou .
mint do not necessarily represent official
OERI positien or policy.

Running Head: ADOLESCENTS' CHUNKING

BEST COPY AVAILABLE

2

.6.. .
. .

'Adolescents' ChunkUng

Adolescents' Chunking of Computer Programs

In the last decade, much has been made of the cognitive

benefits of computer programming for children (e.g., Papert,

1988). Students have been taught such programming languages as

BASIC and LOGO with the goals of increasing their planning

abilities, problemsolving skills, and metacognitive awareness

of the problemsolving process itself. However, the research

to date has produced contradictory results concerning the

effects of learning to program on the development of children's

complex cognitive skills (Pea & Kurland, 1984). At this point

in time, it seems logical to focus research efforts on more

basic questions. Specifically, what children do learn about

the programming process and how do they organize that knowledge

in memory?

Researchers of the psychology of computer programming has

employed an information processing perspective in their

attempts to un,:over knowledge about the cognitive processes of

programming (e.g., Brooks, 1977; Mayer, 1981). Specifically,

problem solving theories have served as a theoretical framework

for the investigation of the cognitive processes required to

construct workable computer programs (e.g., Newell & Simon,

1972).

In focusing on computer programming, recent studies using

adult subjects suggest that expert programmers have a "plan

library" of basic computer programming "schemas," or recurrent

functional chunks of programming code that are often used (Pea

& Kurland, 1983). In an investigation of the knowledge

3

Adoleseents' Chunking - 3

structures of programmers with varying levels of expertise,

McKeithen et al. (1981) found that experts could recall more

program lines and procedural chunks across trials thin either

intermediate or novice programmers. Further, experts were able

to recall larger and more highly-organized chunks of a coherent

program (using the ALGOL W programming language) than were

intermediate or novice programmers. However, when students

were given a scrambled version of the program, no differences

were found across the groups. These results suggest that

coherent programs were more meaningful for the experts, thus

aliwing them to apply what they knew about programming to the

recall task.

The information derived from the recall protocols of

novices indicated that these individuals focused on surface

structures of the program. That is, they used mnemonic

techniques based on orthography to enhance recall. The

intermediates .recalled small chunks of programming code,

typically those expressed in natural language terms (i.e.,

IF-THEN-ELSE and FOR-STEP-WHILE-DO). Expert programmers

demonstrated a great deal of clustering of the ALGOL W

commands. These clusters were based on the function of the

commands and the flow of control processes in the program.

These results suggest that the experts' knowledge structures

were richer and more complex than the structures of the

intermediate or novice programmers.

In a related study, Adelson (1981) has found differences

in memory capacity and the nature of the knowledge structures

of expert and novice programmers. When asked to recall

4

'

'Adoiescents'-Chunking = 4

programs in the Polymorphic Programming Language (PPL) code,

experts were able to recall more of the program than novices.

Further, the findings suggest that while both groups of

programmers had conceptual categories for the elements of PPL,

the expert programmers seemed to have a more complex

conceptualization of the code. That is, the novice

programmers' recalls were in the form of a syntax-based

organization, while the expert programmers' recalls assumed a

semantic, hierarchical organization based on principles of

command functions.

Research on the changes in children's conceptual

structures after instruction

environment has just begun to

in a computer programming

emerge. For example, Pea &

Kurland (1983) examined children's learning of programm!ng

syntax and comprehension of frequently-used subroutines. Their

findings indicate that child programmers learn the basic syntax

Of ''the language and can construct simple, workable programs.

However, they are not able to understand their own program's

flow-of-control or more advanced concepts of recursion,

conditionals, and variables.

In an effort to investigate what children do learn in a

programming environment, the purpose of this study was to

examine how students of varying programming abilities recall

and organize programming concepts. Specifically, this study

focused on the recall of advanced, intermediate, and beginning

adolescents for coherent and scrambled computer programs. The

specific research questions were:

1. What is the relationship between level of

5

4

g

Adolescents' Chunking - 5

programming expertise and the number of program

lines and chunks recalled from coherent versus

scrambled programs?

2. What is the relationship between level of

programming expertise and the nature of line and

chunk recall in coherent versus scrambled

programs?

Design of the,Study

Setting

The study was conducted during the second session of the

Virginia Tech Computer Camp during the third and fourth weeks

of July1 1985.

Treatment

On the first day of camp of the 12-day camp, all campers

took a test on programming skills to facilitate placement in

appropriate instructional groups: beginning, intermediate, and

advanced. BeGinning programmers were taught to program in

Applesoft BASIC. Intermediate programmers were taught advanced

concepts in Applesoft BASIC (e.g., text files). Advanced

programmers had a background in BASIC and were taught PASCAL, a'

more structured, procedurally organized language than BASIC.

At all levels, instruction involved the learning of programming

syntax and debugging. In addition, the instruction emphasizes

structured programming skills which included thoughtful

planning before beginning on-line programming and the use of

top-down programming structure. A typical daily schedule

included approximately 5 hours of instruction, 4 of which were

spent in planning programs or on-line programming.

6

'41

Adolescents' Chunking - 6

Particiaants

From a pool of 58 campers, ages 10 to 18, 5 advanced

programmers, 7 intermediate programmers, and 4 beginning

programmers agreed to participate in the study. Four of the 16

participants were girls, 12 were boys. This ratio of girls to

boys was approximately the same for the camp as a whole.

Oarticipants ranged in age from 12 to 17.

Materials

Two coherent and two scrambled versions of computer

programs were constructed by the researchers and pilot testea

during the first session of the camp (i.e., first two weeks of

July). These programs reflected the concepts that were taught

in the beginning classes and reinforced in the intermediate and

advanced classes. All programs were 16 to 18 lines long and

written in the Applesoft BASIC prog^amming language. Coherent

programs were arranged in a structured, top-down programming

style, which inherently organizes the program into procedural

chunks. Scrambled programs were constructed from programs

consistino of the same concepts as the coherent programs with

the program lines rearranged to separate program lines that

formed coherent procedural chunks.

Data Collection

Data was collected on the tenth day of the two-week

session. All participants were gathered in one classroom and

given a packet containing the four programs, four pieces of

loose-leaf paper, and a pencil. The presentation of the

to-be-remembered programs was randomly ordered for each

participant. The participants were instructed that they would

7

74

Adolescents' Chunking - 7

have two minutes to read the program and try to remember it as

best as they could. At the end of two minutes, they were asked

to close the program pact...e: -:te on a clean piece of paper

as much of the program as they could remember. The recall

period laated four minutes which appeared to be ample time for

recall since all students completed their recall protocols, for

scrambled and coherent programs, before the end .of the

four-minute time period. Between each trial the recall sheets

were collected and the participants engaged in a brief

distractor task.

Analysis of the Data

The recall sheets were scored for number of correct

programming lines. A program line was considered correct if

the command was spelled correctly and subsequent syntax allowed

the cist of the command line to be executed. For example, a

recalled line would be counted correct if the original program

line read, PRINT "Hi, I'm glad to meet you.", and the

participant wrote, PRINT "Hi, nice to meet you." Also if the

participant changed the variable letters in a loop (e.g., FOR I

= 1 to 5; to FOR S = 1 to 5), the program line was counted

correct if all subsequent lines using the variable had assumed

the correct variable assignment. The recall sheets were also

scored for the number of procedural chunks recalled by the

participants. Descriptive statistics were calculated for

number of courect program lines and number of procedural chunks

recalled. Two separate 3 x 2 x 2 split plot analyses of

variance were conducted to assess group differences in line and

chunk recall for each version of the coherent and scrambled

Adolescents' Chunking 8

programs. Tukey tests were used to further investigate main

effects within specific cells. Finally, protocols were

qualitatively analyzed to examine the nature of the line and

chunk recall .

Results and Disc ssion

Table 1 reports the mean number of program lines and

procedural chunKs recalled across program conditions and

groups. The raw data indicated that there was a difference in

line and chunk recall according to program type (coherent

versus scrambled). All three groups of programmers recalled

more program lines and chunks 'from the coherent programs than

from the scrambled programs. From the graphs of the raw data

(see Figures 1 and 2), this difference was found to be

especially apparent for the intermediate programmers. This

finding may be due to the curricular emphasis at the computer

camp, as well as the programmers' experience level. The

advanced group, although familiar with the BASIC language, had

been programming in PASCAL during their time at computer camp.

These L.ampers may not have been as able as the intermediate

group to spontaneously apply schemata or templates for coherent

models of BASIC programs. While both the intermediate and

beginning programmers had been programming in BASIC, the

intermediate group, with their increased level of experience

and greater knowledge about what makes programs work, might

have been more sensitive to the programs' level of coherence.

Insert Table 1 and Figures 1 and 2 about here

9

Adolescents' Chunking 9

The results of the two analyses of variance confirmed

these findings. There Was a significant main effect for

program version (coherent versus scrambled), for both line

recall (F(1,13) = 7.22, p(.017] and chunk recall [F(1,13) =

19.477, p<.001]. While not reaching an acceptable level of

significance (i.e., p<.05) in either the line [F(2,13) = .497,

p=NS] or chunk [F(2,13) = 3.3501 p(.066] recall analysis, an

interaction between level of experience and program type can be

seen in the graphs of the mean scores (see Figures 1 and 2).

Contrary to the findings of Adelson (1981) and McKeithen et al.

(1981), the advanced programmers did not recall the most

program lines or chunks in the coherent condition. When

compared with the advanced or beginning programmers, the

intermediate programmers recalled more lines and chunks in the

coherent condition, but not in the scrambled program condition.

In the scrambled condition, the advanced programmers recalled

more than the intermediates, who, in turn, recalled more than

the beginners.

This interaction may be explained in terms of the

development of a specific versus general knowledge of

programming. That is, the primary and, for the most part, sole

programming language of the intermediate programmers was the

BASIC language. During their ten days at camp, their expressed

tasks had been to construct coherent programs that were

procedurally organized, resulting in a specific knowledge of a

programming language. The advanced group, on the other hand,

had a working knowledge of BASIC and were expanding their

knowlvdge of programming to another environment -- PASCAL.

10

Adolescents' Chunking 10

Thus, the advanced programmers were developing a broader, more

general knowledge of programming. As a result, the advanced

prograqimers were able to use this general knowledge to organize

procedural chunks in the scrambled, as well as the coherent,

programs, while the intermediate programmers had to rely on

their specific knowledge base of procedurallyoriented BASIC

programs.

Unlike the findings of McKeithen et al. (1981), the

beginning programmers showed s!gnificant differences in both

the number of lines (p<.05) and chunks (p<.01) recalled in the

coherent versus scrambled conditions. While the chunking

findings may be suspect due to the narrow range of the raw

scores (i.e., the beginners recalled only two procedural chunks

from the coherent programs, and none from the scrambled

programs), it seemed that, given the mean difference in line

recall, they had developed a level of expertise that could

differentiate coherent from scrambled programs. While this

knowledge was not sufficient to enable the beginning

programmers to recall as many lines or chunks as the more

experienced programmers, they were able to demonstrate some

degree of knowledge of the domain.

Closer examination of the nature of the program line

recall revealed two distinct patterns. First, the beginning

programmers tended to group like commands together from the

coherent, as well as the scrambled, programs. For example, one

beginning programmer wrote all of the lines that called

subroutines together (i.e., GOSUB 70, GOSUB 70, GOSUB 200).

Another grouped all of the code that controlled the colors of

11

pdp1e%4ents' Chunking 11

the programmed graphic (i.e., COLoR,, C0L0R=2, COLOR=0).

Thus, while not forming chunks related to procedures, the

beginners did organize their recall aciording to syntactic

features. The advanced programmers, wi the other hand,

attempted to recall the scrambled, ae 1.46,11 as the coherent,

programs in a procedural order. That i, trey seemed to try to

make "sense" out of the scrambled programy by reordering some

of the lines to produce workable Proceduh$1 ehunks.

The second response pattern parallel% the serial position

effect reported by Rundus (1971) in hiy research on verbal

rehearsal and word list recall. His .findings indicated that

the probability of recalling a word deDehoyd upon its position

in a list. Typically, words appearin i the beginning or at

the end of the list were recalled more OW than words in the

middle of the list. Words at the Deiwning of the list were

rehearsed more often than the other wordy, giving them a higher

probability of being retrieved -from lonvt*rm memory. Words at

the end of the lists were most recentl>. seen, thus having them

accessible in shortterm memorY. Thiy one serial position

effect was seen in beginning programmergi recall of coherent

programs and all programmers' recall of ecrambled programs.

These patterns of recall support the n4tion that the beginning

programmers relied on a rote recall baled on syntactic or

physical features for coherent ano scrambled programs, while

the more experienced programmers reveiNteo to this method only

when they could not extract some meaning frbtr, the programs.

These findings suggest thb.t as adole%cents gain expertise

in programming, theY develop ypeci+ic schoata for oftenused

BEST COPY AVAILARE

12

Adolescents' Chunking - 12

chunks of programming procedures. Even the beginning

programmers, who had only 10 days of programming, demonstrated

a rudimentary knowledge of the BASIC language and procedures.

Tho findings from the intermediate group indicated that their

proficiency as programmers was advanzed enough to be successful

when the program made sense, but fragile enough to falter when

the program was incoherent. The advanced programmers seemed to

be able to take a program, either coherent or scrambled, and

order the lines into meaningful procedural chunks that would

allow the program to run successfully. Similar results were

reported by McKeithen et al. (1981) with adult programmers and

Egan and Schwartz (1979) with electronics experts. In the

McKeithen et al study, the adult expert programmers added

specific lines to the scrambled program in order to produce

coherent nested loops and output sequences. In the Egan and

Schwartz study, the electronics experts attempted to recall

srmbols systematically when the symbols of the electronics

diagram were inappropriately positioned.

Differences between advanced and intermediate programmers

also became evident in their comments about the recall task.

Only advanced programmers remarked about the incoherence of the

scrambled programs and stated that those programs were more

difficult to remember because "they didn't make any sense."

Thus, the difference between intermediate and advanced

programmers was seen in their desire to make the program "make

sense" as well as in their confidence in declaring that

something was wrong.with the scrambled program.

Conclusions

13

Adolescents' Chunking - 13

ihe results of this preliminary investigation indicate

that adolescents do learn and organize meaningful knowledge

about computer programming much the same way that adults do.

That is, those adolescents with more experience and practice

develop a ltrvel of expertise that allows them to recall

programs in terms of semantically related procedures rather

than syntactic or physical features. In terms of this study,

even those participants who were not programming in BASIC on a

daY-to-clay basis were still able to recall their prior

experience with BASIC and the procedures that produce cer:.

programmed results.

While the generalizability of this study is restricted to

this sample and setting, it is encouraging to see evidence that

adolescents can acquire some levels of expertise in the area of

programming. Continued study in this area will be able to

reveal individuals' conceptual organization of this programming

knowledge. Further investigation into the types of

instructional environments and individual differences that are

related to the acquisition of programming knowledge is also

warranted. By assessing what children are learning in

programming environments, we will be hetter able to ascertain

the cognitive benefits of learning to program.

14

Adolescents' Chunking 14

Acknowledgements

The authors wish to thank Norman Dodl, Director of the

Virginia 'Tech Computer Camp, the staff members who assisted in

the data collection, and the campers who graciously

participated.

15

Adolescents' Chunking - 15

References

Adelson, S. (1981). Problem solving and the development

of abstract categories in programming languages.

Memory and Coonition, I, 422-433.

Brooks, R. E. (1977). Toward a theory of the cognitive

processes in computer programming. International

Journal of Man-Machine Studies, /, 737-751.

Egan, D. E., & Schwartz, B. J. (1979). Chunking in recall

of symbolic drawings. Memory and Coonition, Z,

149-158.

Mayer, R. E. (1981). The psychology of how novices learn

computer programming. Comoutino Surveys, 12,

121-141.

McKeithen, K. B., Reitman, J. S., Reuter, H. H., & Hirtle,

S. C. (1981), Knowledge organization and skill

differences in computer programmers. Coonitive

PsYcholoox, 12, 307-325.

Newell, A., & Simon, H. A. (1972). Human problem

solving. Englewood Cliffs, NJ: Prentice-Hall.

Papert, S. (1980). Minds rms: Children com uters

and powerful ideas. New York: Basic Books.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive

effects of learning computer orGorammino: A critical

look (Report No. 9). New York: Bank Street College

of Education.

Pea, R. D., & Kurland, D. M. (1983). On the coonitive

prerequisites of learnino computer prooramminq

16

. Adolescents' Chunking - 16

(Technical Report No. 18). New York: Bank Street College

of Education.

Rundus, D. (1,70.. Analysis of rehearsal processes in free

recall. Journal of Experimental PsYcholooy, 89,

63-77.

Figyml. Moan number of lines recalled across groups
and conditions.

11

1 0

9

8

7

6

5

1

Beg i nners

o n termed i ate

* Advanced

Scrambled

PROORRM

Coherent

Figure 2. Mean number of chunks recalled across groups and
and conditions.

Beginners

olntermediate

*Advanced

0 . 5

0
Scrambled

PROGRAM

18

Coherent

Table 1. Mean number of program lines and procedUral chunks
recalled across conditions and groups.

Beginning

Lines Chunks
Intermediate

Lines Chunks
Advanced

Lines Chunks

Coherent 7.38 0.63 9.93 2.36 8.90 1.40
(SD) 2.20 0.74 4.25 1.78 3.78 1.43

Scrambled 5.75 0.00 7.21 0.14 7.80 0.60
(SO) 1.28 0.00 2.42 0.36 1.93 0.84

19

